Cell Differentials:
A White Blood Cell Identification
Exercise

User's Notes

Donald Buckley Quinnipiac University
Deborah Clark Quinnipiac University
Karen Barrett University of Hartford
Lynn Gugliotti University of Hartford
JoAnne Morrica University of Hartford

A BioQUEST Library VII Online module published by the BioQUEST Curriculum Consortium

The BioQUEST Curriculum Consortium (1986) actively supports educators interested in the
reform of undergraduate biology and engages in the collaborative development of curricula.
We encourage the use of simulations, databases, and tools to construct learning environments
where students are able to engage in activities like those of practicing scientists.

Email: bioquest@beloit.edu Website: http://bioquest.org

Editorial Staff

Editor: John R. Jungck Beloit College
Managing Editor: Ethel D. Stanley Beloit College, BioQUEST Curriculum Consortium
Associate Editors: Sam Donovan University of Pittsburgh
Stephen Everse University of Vermont
Marion Fass Beloit College
Margaret Waterman Southeast Missouri State University
Ethel D. Stanley Beloit College, BioQUEST Curriculum Consortium
Online Editor: Amanda Everse Beloit College, BioQUEST Curriculum Consortium
Editorial Assistant: Sue Risseeuw Beloit College, BioQUEST Curriculum Consortium

Editorial Board

Ken Brown University of Technology, Sydney, AU
Joyce Cadwallader St Mary of the Woods College
Eloise Carter Oxford College
Angelo Collins Knowles Science Teaching Foundation
Terry L. Derting Murray State University
Roscoe Giles Boston University
Louis Gross University of Tennessee-Knoxville
Yaffa Grossman Beloit College
Raquel Holmes Boston University
Stacey Kiser Lane Community College
Peter Lockhart Massey University, NZ
Ed Louis The University of Nottingham, UK
Claudia Neuhauser University of Minnesota
Patti Soderberg Conserve School
Daniel Udovic University of Oregon
Rama Viswanathan Beloit College
Linda Weinland Edison College
Anton Weissstein Truman University
Richard Wilson (Emeritus) Rockhurst College
William Wimsatt University of Chicago
Copyright, Trademark, and License Acknowledgments

Portions of the BioQUEST Library are copyrighted by Annenberg/CPB, Apple Computer Inc., Beloit College, Claris Corporation, Microsoft Corporation, and the authors of individually titled modules. All rights reserved. System 6, System 7, System 8, Mac OS 8, Finder, and SimpleText are trademarks of Apple Computer, Incorporated. HyperCard and HyperTalk, MultiFinder, QuickTime, Apple, Mac, Macintosh, Power Macintosh, LaserWriter, ImageWriter, and the Apple logo are registered trademarks of Apple Computer, Incorporated. Claris and HyperCard Player 2.1 are registered trademarks of Claris Corporation. Extend is a trademark of Imagine That, Incorporated. Adobe, Acrobat, and PageMaker are trademarks of Adobe Systems Incorporated. Microsoft, Windows, MS-DOS, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation. Helvetica, Times, and Palatino are registered trademarks of Linotype-Hell. The BioQUEST Library and BioQUEST Curriculum Consortium are trademarks of Beloit College. Each BioQUEST module is a trademark of its respective institutions/authors. All other company and product names are trademarks or registered trademarks of their respective owners. Portions of some modules' software were created using Extender GrafPak™ by Invention Software Corporation. Some modules' software use the BioQUEST Toolkit licensed from Project BioQUEST.
Cell Differentials

In traditional labs, the recognition of white blood cell types can be compromised by several factors. Developmental changes can make recognition difficult for novices. Also, some cell types exhibit similar features. This kind of learning experience can profit from feedback, but microscopy can be a very individualistic kind of experience in which opportunities for feedback can be limited to spot checks of student comprehension. Student feedback can also be compromised by differences in learning styles. Some individuals are much more assertive about obtaining instructor feedback. Cell Differentials was developed as a wet lab preface, to provide abundant real-time feedback, incentives for competency-based learning standards, and tools to monitor individual learning needs more effectively.

Instructions

Turn on the microscope by clicking on the switch in the top-right of the screen. Once a new cell appears in the microscope field, identify the cell type by clicking on the correct "clicker" key at the lower left. The number of each cell type scored is recorded in a small field above each key and displayed graphically in the "raw scores" histogram on the right side of the clicker.

The exercise can be repeated as many times as you wish, in 100-cell sessions. Note that the exercise calculates a mean quiz grade from the three most recent 100-cell sessions. Earlier quizzes are ignored in the calculation to encourage students to strive for three successive high scores as a demonstration of their proficiency. To start another 100-cell session, click the switch off and on again. The quiz scores are advanced to the next quiz field to make room for a new quiz. Note that the "Mean" quiz field is blank once a quiz has begun and is not yet finished. On the 100th score, the mean quiz score is displayed. At this point, the window might be printed and passed in for a grade.

Cell Differentials provides several kinds of feedback:

a. When an incorrect cell identification is made, the correct answer is highlighted on the clicker. You may then click anywhere to continue the exercise.

b. Quiz scores are calculated to encourage students to repeat the experience until they have become proficient. Only the last three quiz scores are used to calculate the mean quiz grade, so as to encourage students to persevere in their development of a high level of proficiency.

c. The light board on the top-left of the screen provides a graphical summary of the student's last experience. This is intended to allow the student and instructor to identify and review individual learning needs. Clicking on a red or green light
brings up a dialog box that provides more details about the student's recognition of those particular cell types.

Figure 1. Three kinds of assessment tools to provide real-time feedback, encouragement to master the material, and diagnostic clues about individual learning needs.